Transcriptional downregulation of p27KIP1 through regulation of E2F function during LMP1-mediated transformation.

نویسندگان

  • David N Everly
  • Bernardo A Mainou
  • Nancy Raab-Traub
چکیده

LMP1 induces the phenotypic transformation of fibroblasts and affects regulators of the cell cycle during this process. LMP1 decreases expression of the cyclin-dependent kinase inhibitor p27 and increases the levels and phosphorylation of cyclin-dependent kinase 2 and the retinoblastoma protein. In the present study, the effects of LMP1 on cell cycle progression and the mechanism of p27 downregulation by LMP1 were determined. Although p27 is frequently regulated at the posttranscriptional level during cell cycle progression and in cancer, LMP1 did not decrease ectopically expressed p27. However, LMP1 did decrease p27 RNA levels and inhibited the activity of p27 promoter reporters. The LMP1-regulated promoter element was mapped to a region containing two E2F sites. Electrophoretic mobility shift assays determined that the regulated cis element bound an inhibitory E2F complex containing E2F4 and p130. These findings indicate that LMP1 decreases p27 transcription through effects on E2F family transcription factors. This property likely contributes to the ability of LMP1 to stimulate cell cycle progression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inducible pRb2/p130 expression and growth-suppressive mechanisms: evidence of a pRb2/p130, p27Kip1, and cyclin E negative feedback regulatory loop.

The retinoblastoma family of proteins, pRb/p105, p107, and pRb2/ p130, cooperate to regulate cell cycle progression through the G1 phase of the cell cycle. Each of the family members realize their common goal of G1-S checkpoint regulation through overlapping and unique growth regulatory pathways. We took advantage of a tetracycline-regulated gene expression system to control the expression of R...

متن کامل

The retinoblastoma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway.

E2F-1 plays a crucial role in the regulation of cell-cycle progression at the G1-S transition. In keeping with the fact that, when overproduced, it is both an oncoprotein and a potent inducer of apoptosis, its transcriptional activity is subject to multiple controls. Among them are binding by the retinoblastoma gene product (pRb), activation by cdk3, and S-phase-dependent down-regulation of DNA...

متن کامل

p27KIP1 blocks cyclin E-dependent transactivation of cyclin A gene expression.

Cyclin E is necessary and rate limiting for the passage of mammalian cells through the G1 phase of the cell cycle. Control of cell cycle progression by cyclin E involves cdk2 kinase, which requires cyclin E for catalytic activity. Expression of cyclin E/cdk2 leads to an activation of cyclin A gene expression, as monitored by reporter gene constructs derived from the human cyclin A promoter. Pro...

متن کامل

Transcription of the Geminin gene is regulated by a negative-feedback loop

Geminin performs a central function in regulating cellular proliferation and differentiation in development and also in stem cells. Of interest, down-regulation of Geminin induces gene transcription regulated by E2F, indicating that Geminin is involved in regulation of E2F-mediated transcriptional activity. Because transcription of the Geminin gene is reportedly regulated via an E2F-responsive ...

متن کامل

Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice

Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 83 24  شماره 

صفحات  -

تاریخ انتشار 2009